Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
Molecules ; 27(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35164145

RESUMO

(-)-α-Bisabolol, a bioactive monocyclic sesquiterpene alcohol, has been used in pharmaceutical and cosmetic products with anti-inflammatory, antibacterial and skin-caring properties. However, the poor water solubility of (-)-α-bisabolol limits its pharmaceutical applications. It has been recognized that microbial transformation is a very useful approach to generate more polar metabolites. Fifteen microorganisms were screened for their ability to metabolize (-)-α-bisabolol in order to obtain its more polar derivatives, and the filamentous fungus Absidia coerulea was selected for scale-up fermentation. Seven new and four known metabolites were obtained from biotransformation of (-)-α-bisabolol (1), and all the metabolites exhibited higher aqueous solubility than that of the parent compound 1. The structures of newly formed metabolites were established as (1R,5R,7S)- and (1R,5S,7S)-5-hydroxy-α-bisabolol (2 and 3), (1R,5R,7S,10S)-5-hydroxybisabolol oxide B (4), (1R,7S,10S)-1-hydroxybisabolol oxide B (5), 12-hydroxy-α-bisabolol (7), (1S,3R,4S,7S)- and (1S,3S,4S,7S)-3,4-dihydroxy-α-bisabolol (8 and 10) on the basis of spectroscopic analyses. These compounds could also be used as reference standards for the detection and identification of the metabolic products of 1 in the mammalian system.


Assuntos
Absidia/metabolismo , Sesquiterpenos Monocíclicos/metabolismo , Biotransformação , Sesquiterpenos Monocíclicos/farmacologia
2.
Int J Mol Sci ; 22(13)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206985

RESUMO

Microbial conjugation studies of licochalcones (1-4) and xanthohumol (5) were performed by using the fungi Mucor hiemalis and Absidia coerulea. As a result, one new glucosylated metabolite was produced by M. hiemalis whereas four new and three known sulfated metabolites were obtained by transformation with A. coerulea. Chemical structures of all the metabolites were elucidated on the basis of 1D-, 2D-NMR and mass spectroscopic data analyses. These results could contribute to a better understanding of the metabolic fates of licochalcones and xanthohumol in mammalian systems. Although licochalcone A 4'-sulfate (7) showed less cytotoxic activity against human cancer cell lines compared to its substrate licochalcone A, its activity was fairly retained with the IC50 values in the range of 27.35-43.07 µM.


Assuntos
Absidia/metabolismo , Chalconas/química , Flavonoides/química , Mucor/metabolismo , Propiofenonas/química , Células A549 , Absidia/química , Antineoplásicos/química , Antineoplásicos/toxicidade , Proliferação de Células/efeitos dos fármacos , Chalconas/metabolismo , Chalconas/toxicidade , Flavonoides/metabolismo , Flavonoides/toxicidade , Humanos , Células MCF-7 , Metaboloma , Mucor/química , Propiofenonas/metabolismo , Propiofenonas/toxicidade
3.
Arch Microbiol ; 203(7): 4313-4318, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34110481

RESUMO

The genus Absidia is widely used in the biotransformation of different classes of natural products. This study evaluates the ability of the Absidia coerulea 3A9 marine derived strain isolated from the ascidian Distaplia stilyfera to perform biotransformations by conducting assays with (-)-cubebin, as substrate. The experiment was optimized using the experimental design proposed by Plackett-Burman for seven factors and eight experiments, to establish the biotransformation conditions that would allow maximum production of biotransformed dibenzylbutyrolactone (-)-hinokinin. An analytical method based on Reverse-Phase-High Performance Liquid Chromatography (RP-HPLC) was developed to quantify the fungal biotransformation product. The factor that influenced the (-)-hinokinin peak area the most positively was the percentage of seawater (%seawater) given that its %relative standard deviation (%RSD) showed a 32.92% deviation from the real value.


Assuntos
4-Butirolactona/análogos & derivados , Absidia , Benzodioxóis , Lignanas , 4-Butirolactona/síntese química , Organismos Aquáticos/metabolismo , Benzodioxóis/síntese química , Biotransformação , Lignanas/síntese química , Lignanas/química , Lignanas/metabolismo , Água do Mar/química
4.
Am J Otolaryngol ; 42(6): 103080, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34022619

RESUMO

BACKGROUND: Acute invasive fungal rhinosinusitis (AIFRS) is aggressive morbidity affecting immunocompromised patients. Coronavirus disease 2019 (COVID-19) may allow secondary fungal disease through a propensity to cause respiratory infection by affecting the immune system leading to dysregulation and reduced numbers of T lymphocytes, CD4+T, and CD8+T cells, altering the innate immunity. The aim of this study is to evaluate the incidence of acute invasive fungal rhinosinusitis (AIFRS) in COVID-19 patients. METHODOLOGY: Data for acute invasive rhinosinusitis was obtained from the Otorhinolaryngology departments at our tertiary hospital at the period from January 2017 to December 2020. Then the risk factors of comorbid diseases and fungal types between post-COVID-19 and non-COVID-19 groups regarding the incidence of AIFRS are compared. RESULTS: Consequently, the incidence of AIFRS showed a more significant difference (P < 0.05) in post-COVID-19 patients than in non-COVID-19 especially in immunocompromised patients, diabetic, renal, and liver dysfunction patients as well as patients with risk factors of AIFRS. The most common organisms affecting patients with AIFRS are Rhizopus oryzae, Aspergillus fumigatus, and Absidia mucor. CONCLUSIONS: The incidence of AIFRS is markedly prominent in post-COVID-19 patients than in those of non-COVID-19, especially in immunocompromised, diabetic, renal, and liver dysfunction patients and patients with risk factors for rhinosinusitis.


Assuntos
COVID-19/epidemiologia , COVID-19/imunologia , Surtos de Doenças , Infecções Fúngicas Invasivas , Rinite/epidemiologia , Rinite/microbiologia , Sinusite/epidemiologia , Sinusite/microbiologia , Absidia , Doença Aguda , Idoso , Aspergillus fumigatus , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Humanos , Imunidade Inata/imunologia , Hospedeiro Imunocomprometido/imunologia , Incidência , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rinite/diagnóstico por imagem , Rinite/imunologia , Rhizopus oryzae , Fatores de Risco , Sinusite/diagnóstico por imagem , Sinusite/imunologia , Tomografia Computadorizada por Raios X , Adulto Jovem
5.
Mycologia ; 112(3): 552-569, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32163338

RESUMO

Species of Syncephalis (Zoopagomycotina, Piptocephalidaceae) are obligate mycoparasites that grow on common saprobic species of Mortierellomycotina and Mucoromycotina in soil and dung. Despite their ubiquitous occurrence across the globe, fungi in the genus Syncephalis are understudied, and there are few modern taxonomic treatments of these fungi. In order to clarify species concepts in the genus, we provide morphological data and discuss seven classical Syncephalis species: S. basibulbosa, S. cordata, S. depressa, S. hypogena, S. intermedia, S. nodosa, and S. sphaerica. Three of these species are only known as herbarium specimens (S. basibulbosa, S. cordata, S. intermedia). We have isolated co-cultures of the remaining parasites (S. depressa, S. nodosa, and S. sphaerica) on their host fungi both from nature and from culture collections. The remaining taxon (S. hypogena) was revived from a lyophilized culture. We provide photos and updated descriptions for all of these species as well as new geographic data and references to documented herbarium specimens for each taxon. In addition, we also describe the new species S. latigena.


Assuntos
Absidia/patogenicidade , Fezes/microbiologia , Fungos/classificação , Fungos/citologia , Fungos/patogenicidade , Parasitos/classificação , Parasitos/citologia , Microbiologia do Solo , Animais
6.
Metab Eng ; 57: 31-42, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669370

RESUMO

Hydrocortisone is an effective anti-inflammatory drug and also an important intermediate for synthesis of other steroid drugs. The filamentous fungus Absidia orchidis is renowned for biotransformation of acetylated cortexolone through 11ß-hydroxylation to produce hydrocortisone. However, due to the presence of 11α-hydroxylase in A. orchidis, the 11α-OH by-product epi-hydrocortisone is always produced in a 1:1 M ratio with hydrocortisone. In order to decrease epi-hydrocortisone production, Saccharomyces cerevisiae was engineered in this work as an alternative way to produce hydrocortisone through biotransformation. Through transcriptomic analysis coupled with genetic verification in S. cerevisiae, the A. orchidis steroid 11ß-hydroxylation system was characterized, including a cytochrome P450 enzyme CYP5311B2 and its associated redox partners cytochrome P450 reductase and cytochrome b5. CYP5311B2 produces a mix of stereoisomers containing 11ß- and 11α-hydroxylation derivatives in a 4:1 M ratio. This fungal steroid 11ß-hydroxylation system was reconstituted in S. cerevisiae for hydrocortisone production, resulting in a productivity of 22 mg/L·d. Protein engineering of CYP5311B2 generated a R126D/Y398F variant, which had 3 times higher hydrocortisone productivity compared to the wild type. Elimination of C20-hydroxylation by-products and optimization of the expression of A. orchidis 11ß-hydroxylation system genes further increased hydrocortisone productivity by 238% to 223 mg/L·d. In addition, a novel steroid transporter ClCDR4 gene was identified from Cochliobolus lunatus, overexpression of which further increased hydrocortisone productivity to 268 mg/L·d in S. cerevisiae. Through increasing cell mass, 1060 mg/L hydrocortisone was obtained in 48 h and the highest productivity reached 667 mg/L·d. This is the highest hydrocortisone titer reported for yeast biotransformation system so far.


Assuntos
Absidia/genética , Sistema Enzimático do Citocromo P-450 , Proteínas Fúngicas , Hidrocortisona , Engenharia Metabólica , Saccharomyces cerevisiae , Absidia/enzimologia , Biotransformação , Cortodoxona/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hidrocortisona/biossíntese , Hidrocortisona/genética , Hidroxilação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
7.
Steroids ; 149: 108427, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31228485

RESUMO

Medroxyprogesterone acetate (MPA) (1) has been transformed by two filamentous fungi, including Absidia griseolla var. igachii and Acremonium chrysogenum, into 11α-hydroxy-medroxyprogesterone acetate (2) as the major metabolite. The structure of the product was identified by different spectroscopic methods (1D- and 2D-NMR, EI-MS, and elemental analysis). Moreover, a time course study determined by HPLC showed 63% and 48% yields for the metabolite by using the two mentioned fungi, respectively. Finally, the effect of the temperature and concentration of the substrate were investigated, which the optimal fermentation conditions were found to be 25 °C with a substrate concentration of 0.1% (w/v). This study reports for the first time the production of 11α-hydroxy-medroxyprogesterone acetate as a fungal biotransformation product.


Assuntos
Absidia/metabolismo , Acremonium/metabolismo , Acetato de Medroxiprogesterona/química , Acetato de Medroxiprogesterona/metabolismo , Biotransformação , Hidroxilação
8.
Bioorg Chem ; 93: 102750, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755333

RESUMO

In the present study, the species: Beauveria bassiana, Absidia coerulea and Absidia glauca were used in biotransformation of flavones (chrysin, apigenin, luteolin, diosmetin) and flavanones (pinocembrin, naringenin, eriodictyol, hesperetin). The Beauveria bassiana AM 278 strain catalyzed the methylglucose attachment reactions to the flavonoid molecule at positions C7 and C3'. The application of the Absidia genus (A. coerulea AM 93, A. glauca AM 177) as the biocatalyst resulted in the formation of glucosides with a sugar molecule present at C7 and C3' positions of flavonoids skeleton. Nine of obtained products have not been previously reported in the literature.


Assuntos
Absidia/metabolismo , Beauveria/metabolismo , Flavonoides/metabolismo , Biotransformação , Flavonoides/química , Glucosídeos/metabolismo , Glicosilação , Estrutura Molecular
9.
Environ Sci Pollut Res Int ; 26(8): 7804-7809, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30675711

RESUMO

The development of natural plant extracts and essential oils will help to decrease the negative effects of synthetic chemicals. In the present study, the antifungal activity of individual and combined monoterpenes against Rhizopus stolonifer and Absidia coerulea was evaluated. The results from antifungal tests showed that eugenol, carvacrol, and isoeugenol, among all the tested compounds, exhibited strong antifungal activity against the two tested fungi. Furthermore, carvacrol exhibited the most toxic effects against R. stolonifer and A. coerulea, and the IC50 values of carvacrol for the two fungi were 44.94 µg/ml and 50.83 µg/ml, respectively. The compounds (±)-menthol, b-citronellol, geraniol, 3,7-dimethyl-1-octanol, citral, and cuminaldehyde had only strong antifungal activity against R. stolonifer. In addition, the value of the synergistic co-efficient (SR) of a combination of isoeugenol and eugenol (1:1) showed an additive effect against R. stolonifer. The combination of isoeugenol and cuminaldehyde (1:1) showed an antagonistic effect against A. coerulea. Our results indicated that carvacrol and isoeugenol had potential antifungal effects against the two tested fungi and could be utilized in novel biological fungicide development.


Assuntos
Absidia/efeitos dos fármacos , Antifúngicos/toxicidade , Fungicidas Industriais/toxicidade , Monoterpenos/toxicidade , Rhizopus/efeitos dos fármacos , Monoterpenos Acíclicos , Cimenos , Eugenol/análogos & derivados , Fungos , Mentol , Testes de Sensibilidade Microbiana , Óleos Voláteis , Terpenos
10.
Int J Syst Evol Microbiol ; 68(8): 2468-2472, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29927367

RESUMO

A strain (SYPF 7183T) was isolated from rhizosphere soil of Panax notoginseng in southwest China. Phylogenetic analyses indicated that strain SYPF 7183T was distinct from the other Absidia species with well-supported values. Strain SYPF 7183T produced spherical or subpyriform sporangia and short cylindrical sporangiospores. The azygospores were globose to oval. Based on morphological and phylogenetic evidence, the novel strain Absidia panacisoli sp. nov. is proposed.


Assuntos
Absidia/classificação , Panax notoginseng/microbiologia , Filogenia , Rizosfera , Microbiologia do Solo , Absidia/genética , Absidia/isolamento & purificação , China , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Técnicas de Tipagem Micológica , Análise de Sequência de DNA
11.
Bioorg Chem ; 78: 178-184, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29574302

RESUMO

In this work, 17α-methyltestosterone was effectively hydroxylated by Absidia coerulea KCh 93, Syncephalastrum racemosum KCh 105 and Chaetomium sp. KCh 6651. A. coerulea KCh 93 afforded 6ß-, 12ß-, 7α-, 11α-, 15α-hydroxy derivatives with 44%, 29%, 6%, 5% and 9% yields, respectively. S. racemosum KCh 105 afforded 7α-, 15α- and 11α-hydroxy derivatives with yields of 45%, 19% and 17%, respectively. Chaetomium sp. KCh 6651 afforded 15α-, 11α-, 7α-, 6ß-, 9α-, 14α-hydroxy and 6ß,14α-dihydroxy derivatives with yields of 31%, 20%, 16%, 7%, 5%, 7% and 4%, respectively. 14α-Hydroxy and 6ß,14α-dihydroxy derivatives were determined as new compounds. Effect of various sources of nitrogen and carbon in the media on biotransformations were tested, however did not affect the degree of substrate conversion or the composition of the products formed. The addition of α- or ß-naphthoflavones inhibited 17α-methyltestosterone hydroxylation but did not change the percentage composition of the resulting products.


Assuntos
Benzoflavonas/farmacologia , Inibidores Enzimáticos/farmacologia , Metiltestosterona/antagonistas & inibidores , Oxigenases de Função Mista/antagonistas & inibidores , beta-Naftoflavona/farmacologia , Absidia/enzimologia , Benzoflavonas/síntese química , Benzoflavonas/química , Chaetomium/enzimologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Metiltestosterona/química , Metiltestosterona/metabolismo , Oxigenases de Função Mista/metabolismo , Estrutura Molecular , Mucorales/enzimologia , Relação Estrutura-Atividade , beta-Naftoflavona/síntese química , beta-Naftoflavona/química
12.
Chemosphere ; 196: 386-392, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29316464

RESUMO

Trace metals cause deterioration of the soil and constitute a major concern for the environment and human health. Bioremediation could be an effective solution for the rectification of contaminated soils. Fungi could play an important role in biodegradation because of the morphology of their mycelium (highly reactive and extensive biological surface) and its physiology (high tolerance to many stresses, production of enzymes and secondary metabolites). Fungi can effectively biosequestrate, or biotransform many organic and inorganic contaminants into a non-bioavailable form. This experiment was designed to evaluate the tolerance and the biosorption abilities of the fungus Absidia cylindrospora against three trace metals: Cadmium (Cd), Copper (Cu), and Lead (Pb). Firstly, the tolerance of the strain was evaluated on metal-enriched malt extract agar (MEA). Secondly, the strain was exposed to trace metals, in a liquid malt extract medium. After 3 or 7 days of exposure, the quantities of absorbed and adsorbed metals were measured with Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). Biomass production and pH evolution were also evaluated during the test. Our experiment revealed differences between the three metals. In agar medium, Cd and Pb were better tolerated than Cu. In liquid medium, Cd and Pb were mostly absorbed whereas Cu was mostly adsorbed. A. cylindrospora biosorbed 14% of Cu, 59% of Pb and 68% of Cd when exposed for 3 days at 50 mg L-1.


Assuntos
Absidia/metabolismo , Biodegradação Ambiental , Metais Pesados/análise , Oligoelementos/análise , Adsorção , Biomassa , Cádmio/análise , Cádmio/metabolismo , Cobre/análise , Cobre/metabolismo , Chumbo/análise , Chumbo/metabolismo , Metais Pesados/metabolismo , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Oligoelementos/metabolismo
13.
Mitochondrial DNA A DNA Mapp Seq Anal ; 29(1): 113-120, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28034347

RESUMO

Absidia glauca and Parasitella parasitica constitute a versatile experimental system for studying horizontal gene transfer between a mucoralean host and its fusion parasite. The A. glauca chondriome has a length of approximately 63 kb and a GC content of 28%. The chondriome of P. parasitica is larger, 83 kb, and contains 31% GC base pairs. These mtDNAs contain the standard fungal mitochondrial gene set, small and large subunit rRNAs, plus ribonuclease P RNA. Comparing zygomycete chondriomes reveals an unusually high number of homing endonuclease genes in P. parasitica, substantiating the mobility of intron elements independent of host-parasite interactions.


Assuntos
Absidia/genética , Genoma Mitocondrial , Íntrons , Mitocôndrias/genética , Sequência de Bases , Transferência Genética Horizontal , Genoma Fúngico , Mucorales/genética , Mucormicose , Alinhamento de Sequência
14.
J Asian Nat Prod Res ; 20(8): 719-726, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28944684

RESUMO

The microbial transformation of 20(R)-panaxadiol (PD) by the fungus Absidia coerulea AS 3.3382 afforded three new and three known metabolites. The structures of the metabolites were characterized as 3-oxo-20(R)-panaxadiol (1), 3-oxo-7ß- hydroxyl-20(R)-panaxadiol (2), 3-oxo-22ß-hydroxyl-20(R)-panaxadiol (3), 3-oxo- 7ß,22ß-dihydroxyl-20(R)-panaxadiol (4), 3-oxo-7ß,24ß-dihydroxyl-20(R)-panaxadiol (5), and 3-oxo-7ß,24α-dihydroxyl-20(R)-panaxadiol (6). Among them, 2-4 were new compounds. In addition, compounds 3 and 4 exhibited significant anti-hepatic fibrosis activity.


Assuntos
Absidia/metabolismo , Ginsenosídeos/metabolismo , Ginsenosídeos/uso terapêutico , Linhagem Celular , Humanos , Cirrose Hepática/tratamento farmacológico , Estrutura Molecular , NF-kappa B/metabolismo , Panax notoginseng/química , Espectrometria de Massas por Ionização por Electrospray
15.
Z Naturforsch C J Biosci ; 74(1-2): 1-7, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30864390

RESUMO

Microbial transformations of isoxanthohumol (1), a beer prenylated flavonoid, by 51 fungi were investigated. Many of the tested fungi cultures were capable of effective transformation of 1. Mucor hiemalis and Fusarium oxysporum converted isoxanthohumol (1) into isoxanthohumol 7-O-ß-d-glucopyranoside (3) and (2R)-2″-(2″'-hydroxyisopropyl)-dihydrofurano[2″,3″:7,8]-4″,5-hydroxy-5-methoxyflavanone (4), respectively. No product was obtained in the transformation of 1 by Absidia glauca conducted in a phosphate buffer. In the same medium, Beauveria bassiana converted isoxanthohumol (1) to isoxanthohumol 7-O-ß-d-4″'-O-methylglucopyranoside (2).


Assuntos
Flavonoides/metabolismo , Fungos/metabolismo , Xantonas/metabolismo , Absidia/metabolismo , Beauveria/metabolismo , Cerveja/microbiologia , Biotransformação , Flavonoides/química , Fusarium/metabolismo , Mucor/metabolismo , Xantonas/química
16.
J Steroid Biochem Mol Biol ; 171: 254-261, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28428022

RESUMO

Steroid 11-hydroxylation by filamentous fungi is a major route for industrial scale production of key intermediates in the synthesis of steroid drugs. Although it is well established that enzymes involved in fungal hydroxylation of steroids are cytochrome P450s (CYP), few fungal steroid hydroxylase genes have been identified. In this study, we identified a novel 11α-hydroxylase gene CYP5311B1 from Absidia coerulea AS3.65 by a combination of transcriptome sequencing, real-time qRT-PCR and heterologous expression in Pichia pastoris. The full-length open reading frame (ORF) of CYP5311B1 is predicted to encode a CYP protein of 527 amino acids whose expression in Pichia cells was confirmed by western blot. In addition, the major hydroxylation product was characterized by HPLC and 2D NMR. CYP5311B1 was highly induced by steroid substrate at the transcriptional level. The cloning and identification of an 11α-hydroxylase gene from A. coerulea should aid in a better understanding of the structural basis underlying regio- and stereoselectivity, and substrate specificity of fungal steroid 11α-hydroxylases, thus facilitating the engineering of more efficient steroid hydroxylases for industrial applications.


Assuntos
Absidia/enzimologia , Proteínas Fúngicas/metabolismo , Esteroide Hidroxilases/metabolismo , Sequência de Aminoácidos , Células Clonais , Eletroporação , Indução Enzimática , Compostos de Epóxi/química , Compostos de Epóxi/metabolismo , Escherichia coli , Proteínas Fúngicas/genética , Hidroxilação , Estrutura Molecular , Fases de Leitura Aberta , Filogenia , Pichia , Progesterona/análogos & derivados , Progesterona/química , Progesterona/metabolismo , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Análise de Sequência de RNA , Homologia de Sequência de Aminoácidos , Estereoisomerismo , Esteroide Hidroxilases/genética , Terminologia como Assunto
17.
Appl Environ Microbiol ; 83(8)2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28159792

RESUMO

In the present study, two novel phenolic UDP glycosyltransferases (P-UGTs), UGT58A1 and UGT59A1, which can transfer sugar moieties from active donors to phenolic acceptors to generate corresponding glycosides, were identified in the fungal kingdom. UGT58A1 (from Absidia coerulea) and UGT59A1 (from Rhizopus japonicas) share a low degree of homology with known UGTs from animals, plants, bacteria, and viruses. These two P-UGTs are membrane-bound proteins with an N-terminal signal peptide and a transmembrane domain at the C terminus. Recombinant UGT58A1 and UGT59A1 are able to regioselectively and stereoselectively glycosylate a variety of phenolic aglycones to generate the corresponding glycosides. Phylogenetic analysis revealed the novelty of UGT58A1 and UGT59A1 in primary sequences in that they are distantly related to other UGTs and form a totally new evolutionary branch. Moreover, UGT58A1 and UGT59A1 represent the first members of the UGT58 and UGT59 families, respectively. Homology modeling and mutational analysis implied the sugar donor binding sites and key catalytic sites, which provided insights into the catalytic mechanism of UGT58A1. These results not only provide an efficient enzymatic tool for the synthesis of bioactive glycosides but also create a starting point for the identification of P-UGTs from fungi at the molecular level.IMPORTANCE Thus far, there have been many reports on the glycosylation of phenolics by fungal cells. However, no P-UGTs have ever been identified in fungi. Our study identified fungal P-UGTs at the molecular level and confirmed the existence of the UGT58 and UGT59 families. The novel sequence information on UGT58A1 and UGT59A1 shed light on the exciting and new P-UGTs hiding in the fungal kingdom, which would lead to the characterization of novel P-UGTs from fungi. Molecular identification of fungal P-UGTs not only is theoretically significant for a better understanding of the evolution of UGT families but also can be applied as a powerful tool in the glycodiversification of bioactive natural products for drug discovery.


Assuntos
Absidia/enzimologia , Glicosídeos/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Fenóis/metabolismo , Rhizopus/enzimologia , Difosfato de Uridina/metabolismo , Absidia/genética , Absidia/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicosilação , Glicosiltransferases/química , Glicosiltransferases/isolamento & purificação , Família Multigênica , Filogenia , Rhizopus/genética , Rhizopus/metabolismo
18.
Molecules ; 22(1)2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-28106750

RESUMO

The aim of this study was to obtain new unsaturated lactones by chemical synthesis and their microbial transformations using fungal strains. Some of these strains were able to transform unsaturated lactones into different hydroxy or epoxy derivatives. Strains of Syncephalastrum racemosum and Absidia cylindrospora gave products with a hydroxy group introduced into a tertiary carbon, while the Penicillium vermiculatum strain hydroxylated primary carbons. The Syncephalastrum racemosum strain hydroxylated both substrates in an allylic position. Using the Absidia cylindrospora and Penicillium vermiculatum strains led to the obtained epoxylactones. The structures of all lactones were established on the basis of spectroscopic data.


Assuntos
Biotransformação , Lactonas/síntese química , Lactonas/metabolismo , Absidia/metabolismo , Hidroxilação , Mucorales/metabolismo , Penicillium/metabolismo
19.
Molecules ; 22(1)2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-28054950

RESUMO

Biotransformation of daidzein, genistein and biochanin A by three selected filamentous fungi was investigated. As a result of biotransformations, six glycosylation products were obtained. Fungus Beauveria bassiana converted all tested isoflavones to 4″-O-methyl-7-O-glucosyl derivatives, whereas Absidia coerulea and Absidia glauca were able to transform genistein and biochanin A to genistin and sissotrin, respectively. In the culture of Absidia coerulea, in addition to the sissotrin, the product of glucosylation at position 5 was formed. Two of the obtained compounds have not been published so far: 4″-O-methyl-7-O-glucosyl biochanin A and 5-O-glucosyl biochanin A (isosissotrin). Biotransformation products were obtained with 22%-40% isolated yield.


Assuntos
Absidia/metabolismo , Beauveria/metabolismo , Reatores Biológicos/microbiologia , Genisteína/metabolismo , Isoflavonas/metabolismo , Biotransformação/fisiologia , Fermentação/fisiologia , Glicosilação , Isoflavonas/biossíntese
20.
Nat Prod Res ; 31(8): 883-889, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27788595

RESUMO

Dihydroartemisinin (DHA, 1), a sesquiterpene endoperoxide derived from artemisinin, has shown potent antimalarial and anticancer activities. Microbial transformation of DHA by Absidia coerulea and Penicillium chrysogenum yielded one new (3) and four known metabolites (2, 4-6). The chemical structures of these compounds were identified as deoxydihydroartemisinin (2), 8α-hydroxydeoxyartemisinin (3), deoxyartemisinin (4), 9α-hydroxyartemethin-I (5) and 3α-hydroxydeoxydihydroartemisinin (6) using spectroscopic analyses. Among them, compounds 3 and 4 are artemisinin analogues, which were achieved by unusual oxidation at C-12 position. Biotransformation of DHA by microorganisms was an effective approach to obtain new derivatives of DHA.


Assuntos
Absidia/metabolismo , Antimaláricos/metabolismo , Artemisininas/metabolismo , Penicillium chrysogenum/metabolismo , Antimaláricos/química , Artemisininas/química , Biotransformação , Estrutura Molecular , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...